
 SDK-based Integration with YouTestMe Proctoring

Page 1 of 24

YouTestMe

SDK-based Integration
with YouTestMe Proctoring

 SDK-based Integration with YouTestMe Proctoring

Page 2 of 24

Table of Contents

1 Introduction .. 3

2 Proctoring scenario ... 4

2.1 Technical implementation of the scenario ... 4

3 SDK integration ... 10

3.1 JSON Web Token Standard (RFC 7519)... 10

3.2 Token Generation .. 10

3.3 Token Usage .. 13

3.4 Session Start .. 14

3.5 Session Completion ... 14

3.6 Metrics event .. 15

3.7 Token Based Links ... 17

3.8 Data-attributes for automated initialisation ... 18

4 Monitoring and access to proctor protocols .. 20

5 Getting the results of proctoring ... 22

6 Integration checklist .. 24

 SDK-based Integration with YouTestMe Proctoring

Page 3 of 24

1 Introduction

Supervisor SDK software is a JavaScript library that can be connected to the page of any testing system and

implement seamless integration with the proctoring system. The full SDK documentation is available at

https://proctor-test1.youtestme.com/sdk/doc/.

The testing system must meet the following requirements:

1. Proctoring pages in the testing system must be opened using the HTTPS protocol, a valid SSL-

certificate must be installed on the web server (you can check the validity of the certificate on your

server using the SSLChecker.com service or issue Let’s Encrypt certificate for free);

2. Test pages should not be completely reloaded when switching between questions, the SDK code

should be launched at the beginning of the test and remain loaded until the end (the page can be

reloaded by the user).

It should be noted that the following integration parameters may change:

• Server address: proctor-test1.youtestme.com

use this server as an example only, in production always use the address of your proctoring server;

• Authorization provider: jwt

the default name is this, but can be changed;

• JWT secret key: eexae8phah3Pha1iereez3oo

used to sign the JWT token;

• Webhooks API key: eexae8phah3Pha1iereez3oo

specified in the "X-Api-Key" header of the webhook to authenticate the request.

https://proctor-test1.youtestme.com/sdk/doc/
https://sslchecker.com/sslchecker
https://greenlock.domains/

 SDK-based Integration with YouTestMe Proctoring

Page 4 of 24

2 Proctoring scenario

The scenario of interaction of the student and the proctor with the proctoring system and LMS in the

general case is as follows:

1. the student logs in to the LMS, opens the test and initiates the start of the proctoring session;

2. before the session, the student goes through several stages (optional): agrees with the rules of the

event, checks the equipment, takes a photo of the face and photo of the document, connects the

mobile camera;

3. the student starts the test, the proctoring session starts in parallel;

4. during the exam, video recording of the webcam (with sound) and the computer screen is carried

out, automatic tracking of violations and continuous verification/identification of the student are

carried out;

5. during the session, the proctor can observe the students, the system in real time tells which student

are worth paying attention to;

6. the proctor can interact with students in a chat or through video and audio communications, can

prematurely end the proctoring session in case of gross violations;

7. after the exam is completed, an assessment of the level of confidence in the exam results and a

video protocol with minute details of violations are formed;

8. results are passed to the LMS by webhook.

2.1 Technical implementation of the scenario

1. On the server side of your testing system (LMS), you need to implement the API for generating a

JWT token and passing it to the front-end, where the proctoring session will be initialized through

the Supervisor SDK in the init() function using this token.

2. The token consists of the following parts (see sections 2.1 and 2.2):

o Header — remains unchanged;

o Payload — user and session parameters in JSON format;

o Signature — the signature is formed based on the Payload data and the secret key.

3. On the LMS front-end, you need to implement a mechanism for obtaining a token for the current

user and test by API. The received JWT token will need to be substituted into the proctoring session

initialization function init() in the "token" parameter of the Supervisor SDK library (see section 2.3).

4. At the moment of initialization of the proctoring session on the server side of the proctoring

system, a user and a proctoring session are created (or updated) with the parameters specified in

the JWT Payload. The participant sees the preliminary steps interface before starting proctoring.

5. Following the execution of the init() function, you need to execute the start() function, which will

directly start the proctoring session for the participant. You can display the test itself to the

participant only after the successful execution of the start() function (see section 2.4). Otherwise,

the participant can access the test without proctoring.

6. After the test is completed, the stop() function must be executed so that the proctoring session is

also terminated (see section 2.5).

 SDK-based Integration with YouTestMe Proctoring

Page 5 of 24

7. After processing the session, the results are transmitted to the LMS via a webhook, the address of

which is specified in the "api" parameter (in the JWT Payload), using a POST request in the

"application/json" format.

Before the start of the session, each user goes through a series of steps that are configured in advance and

are necessary to fulfill all the conditions of the testing procedure (each step can be turned on or off). This

includes: the rules of the event (requires user consent), equipment testing, photographing a person,

photographing a document, connecting a mobile camera. Before starting the session, a computer scan

starts, which includes checking the webcam, microphone, network, browser and screen capture. If there are

no technical problems, the check takes place automatically, otherwise the user is given a message with a

description of the problem and options for solving it. After a successful check, a proctoring session is started

in which the user is monitored.

The following are the interfaces that can be displayed to the user before starting a proctoring session.

Interfaces are displayed on top of the current page of the testing system and do not require the preparation

of a special place for their display.

а) Rules and regulations of the exam;

 SDK-based Integration with YouTestMe Proctoring

Page 6 of 24

b) Computer check;

c) Facial capture;

d) ID capture;

 SDK-based Integration with YouTestMe Proctoring

Page 7 of 24

e) Smartphone camera connection.

After successfully completing these steps, the observation mode starts. In this mode, the user can display

video from his camera (preview), notification of problems (violations detected by the system automatically),

and you can also provide access to the chat to contact the proctor. A proctor can contact the user at any

time through chat or video and audio communications. The proctor can terminate the session ahead of

schedule, indicating the conclusion (positive or negative) and comment, in which case the user is shown a

corresponding message. The session page should be opened in a single copy, the system monitors this

independently. If several pages with proctoring are opened in the browser, then the previous pages are

automatically blocked and proctoring in them stops without finishing the session itself. You can continue

the session only in the last open tab.

а) Video from camera (in circle) and chat with proctor (text, audio, video);

 SDK-based Integration with YouTestMe Proctoring

Page 8 of 24

b) Content blocking in incident mode;

c) The session is completed by proctor;

d) The page has been re-opened in another tab.

 SDK-based Integration with YouTestMe Proctoring

Page 9 of 24

Notifications of problems (irregularities) are automatically displayed to the user, thereby giving him/her an

opportunity to rectify the situation if the problem arose unintentionally. If the user does not respond to

messages within a minute, then access to the content is automatically blocked until the problem is fixed

(this behaviour is controlled by the “addons[].lock” option).

Content copy protection mode prohibits copying text and pictures from the page through the clipboard and

context menu, also it prohibits saving the page through the print dialog.

After the test is completed, the proctoring session is stopped and all interfaces are hidden. Proctoring

results are transferred to the testing system by webhook from the proctoring server.

 SDK-based Integration with YouTestMe Proctoring

Page 10 of 24

3 SDK integration

3.1 JSON Web Token Standard (RFC 7519)

For secure transmission of parameters for a proctoring session with protection from changes on the part of

the user, tokens are used according to the JSON Web Token (RFC 7519). The integration consists in

implementing the JWT token generation mechanism on the side of the testing system and using the SDK

library functions to manage the proctoring session.

JSON Web Token (JWT) is a JSON object that is defined in the open standard RFC 7519. It is considered one

of the safest ways to transfer information between two participants. To create it, you need to define a

header with general information on the token, payload data, such as the user name, his role, etc. and

signature.

The diagram below shows the principle of user interaction with testing and proctoring systems using JWT.

The general interaction scenario is as follows:

1. The user of the testing system is authorized in it using the authorization mechanisms provided by

the testing system.

2. Before the start of each individual proctoring session, the testing system generates a JWT using a

predefined secret key that should not be accessible to users. The key storage method is selected by

the testing system itself.

3. The JWT is transmitted to the user, and the user initiates a session in the proctoring system via the

SDK using the JWT token received from the testing system. The JWT stores user identifier

(username field), proctoring session identifier (identifier field), and other session parameters.

4. The proctoring system server receives the JWT, checks its validity, and then starts the proctoring

session for this user.

For more information on how JWT works, see the article: “Understanding JSON Web Tokens (JWT) in 5 Easy

Steps”

3.2 Token Generation

Token generation should be performed on the server, and only the token string should be transmitted to

the client. To create a token:

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://morioh.com/p/63009714b79a
https://morioh.com/p/63009714b79a

 SDK-based Integration with YouTestMe Proctoring

Page 11 of 24

1. Generate payload data in JSON format that describes the user and a specific session of this user in

the following format:

JWT payload

{

 "username": "a34c1a1a-53ef-4728-8dc5-9c4779a8586e",

 "nickname": "John Doe",

 "identifier": "565b30b8-5cfb-42e2-a292-478d20630d1b",

 "template": "default",

 "subject": "Tutorial: proctoring",

 "tags": ["male"]

}

2. Generate a token on the server of the testing system based on payload data using the library (see

the information on the site jwt.io). The encryption algorithm is HS256, the type of token is JWT. For

the proctor-test1.youtestme.com server, the secret key for generating tokens is

"eexae8phah3Pha1iereez3oo". Using the data above, the following token should turn out:

Token

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImEzNGMxYTFhLTUzZWYtNDcyOC04ZGM1LTljNDc

3OWE4NTg2ZSIsIm5pY2tuYW1lIjoiSm9obiBEb2UiLCJpZGVudGlmaWVyIjoiNTY1YjMwYjgtNWNmYi00MmUyL

WEyOTItNDc4ZDIwNjMwZDFiIiwidGVtcGxhdGUiOiJkZWZhdWx0Iiwic3ViamVjdCI6IlR1dG9yaWFsOiBwcm9jd

G9yaW5nIiwidGFncyI6WyJtYWxlIl19.Sr3fp-kzjVPZX4pvKgF7zzhIblJMA1eT7gKhJgSYIXU

A description of the parameters that can be used in JWT payload is given in Table 2.1. Please try to use the

required minimum of parameters, usually these are: exp, username, nickname, template, identifier, subject,

tags, api. It is advisable to use the rest of the parameters only if their change is foreseen on the side of the

testing system. If you need to specify different session parameters for different cases it would be better to

use the templates.

Table 2.1. Description of parameters

Parameter Type Description

JWT Validation

exp* Number UNIX time (in seconds), after which the token becomes invalid

https://jwt.io/
https://proctor-test1.youtestme.com/

 SDK-based Integration with YouTestMe Proctoring

Page 12 of 24

User Profile

username* String unique user id, use of characters is allowed: A-Za-z0-9_-, there should be only one

ID for each user

role String user’s role (“student” or “proctor”), default is " student”

nickname String user‘s visible name

group String user‘s group

labels String[] additional user data

lang String interface language (“en”), the default language is the browser language

referrer String redirection page after logging out of the proctoring system

Proctoring Session

identifier* String unique external proctoring session identifier, use of characters is allowed: A-Za-z0-

9_-, each individual session must have its own ID

template* String template ID for the proctoring session, use of characters is allowed: A-Za-z0-9_-

subject String title of session (exam)

timeout Number the session timeout in minutes, after which it should be stopped if the session is

inactive (integer)

deadline Date deadline of session availability, it cannot be started after this date (in ISO-8601

format **)

invites String[] a list of users to add to the members in the session

tags String[] tags for search

url String URL for a test page for IFRAME integration

api String API address to send results for this session to another server

* — required parameters

** — ISO-8601 format (in UTC): YYYY-MM-DDTHH:mm:ss.sssZ

 SDK-based Integration with YouTestMe Proctoring

Page 13 of 24

3.3 Token Usage

In general, working with SDK for a user with the "student" role means inserting a small JavaScript code on

each page where proctoring is needed. It is essential that the "supervisor.js" script is loaded from the same

proctoring server where the connection is embedded in the code. Otherwise, after the proctoring server

update, an SDK version and a server version may be different, which will cause problems in functioning of

the proctoring.

It is necessary to pass token to the client to the browser and use it in the init() function:

HTML

<script src="//proctor-test1.youtestme.com/sdk/supervisor.js"></script>

<script>

 // create an instance of the Supervisor class

 var supervisor = new Supervisor({

 url: 'https://proctor-test1.youtestme.com'

 });

 // initializing a proctoring session

 // the token field you can specify a string,

 // a function or a promise

 supervisor.init({

 // to indicate that data is transmitted in the format of a JWT

 provider: 'jwt',

 // get string with JWT token from your server

 // your server side must have the appropriate API implemented

 token: fetch('/api/token').then(function(response) {

 if (response.ok) return response.text();

 else throw Error('Failed to get JWT');

 })

 }).then(function() {

 // start proctoring session immediately after initialization

 return supervisor.start();

 }).then(function() {

 // start testing in the e-learning system here

 }).catch(function(err) {

 // in case of an error, display the appropriate message

 alert(err.toString());

 // redirect to home page,

 // to prevent the test from starting without proctoring

 location.href = '/';

 });

 SDK-based Integration with YouTestMe Proctoring

Page 14 of 24

</script>

In most cases, for example, when the page is refreshed in the browser, the session can be resumed. In this

case, use the same identifier and username in token payload and re-call the init() function.

3.4 Session Start

After the init() function is successfully executed, you should start a proctoring session with the start()

function. Functions run asynchronously and return a promise, so the start() function should be called only

after the init() function has been successfully completed.

When the session is successfully started, the "start" event is called, which can be subscribed to using the

following script:

HTML

<script>

 // Subscribe to session start event

 supervisor.on('start', function() {

 console.log('started');

 });

</script>

3.5 Session Completion

When completing a test, it is also necessary to call the stop() function to end the proctoring session.

Otherwise, the last minute may not be saved, and the session will be terminated automatically only after

some time specified in the timeout.

HTML

<script>

 // stop the session

 supervisor.stop()

 .then(function() {

 // log out the session

 return supervisor.logout();

 });

</script>

Once the session is ended (the session can be finished by a participant, a proctor or automatically by

timeout and deadline values), the "stop" event is called, which can be subscribed to as follows:

 SDK-based Integration with YouTestMe Proctoring

Page 15 of 24

HTML

<script>

 // Subscribe to the session completion event

 supervisor.on('stop', function() {

 console.log('stopped');

 });

</script>

3.6 Metrics event

When the session is started, you can subscribe to the “metrics” event which triggers every 10 seconds and

provides the violation score for each metric.

The code sample below shows how you can subscribe to the “metrics” event when the proctoring session is

started:

HTML

<script>

 supervisor.on(['metrics'], function(data) {

 console.log('Metrics event data:' + JSON.stringify(data));

 metricsData = data;

 if (data.metrics.violated) {

 console.log('Violation is detected.');

 // If the exam should be terminated on violation of any metric, you can call exam

termination from here. Exam termination should call supervisor.stop() and supervisor.logout().

 }

 if (data.metrics.c2 * data.weights.w2 > 100 - data.threshold) {

 console.log('Violation detected: Face invisible or not looking into the camera.');

 // If the exam should be terminated on violation of specific metric, you can call

exam termination from here. Exam termination should call supervisor.stop() and supervisor.logout().

 }

 });

</script>

 SDK-based Integration with YouTestMe Proctoring

Page 16 of 24

The sample JSON of data of metrics event:

JSON

{

 "metrics":{

 "c1":0,

 "c2":10,

 "c3":5,

 "m1":0,

 "m2":4,

 "n1":0,

 "s1":0,

 "n2":0

 },

 "weights":{

 "c1":4,

 "c2":4,

 "c3":4,

 "m1":4,

 "m2":1,

 "n1":4,

 "s1":4,

 "n2":4

 },

 "peak":"c2",

 "score":36,

 "threshold":50,

 "violated":true

}

The explanation of the JSON fields of data of metrics event:

Parameter Type Description

metrics Json Json object containing the percentage violation of each metric in the during the last

10 seconds.

weights Json Json object containing the weight of each metric for calculating the overall score.

peak String The metric with highest violation percentage.

score* Number Overall score in the last 10 seconds.

 SDK-based Integration with YouTestMe Proctoring

Page 17 of 24

threshold Number When the overall score is below this value it is considered that violations are made.

violated Boolean True if the overall score is below the threshold.

*The overall score is calculated using the following formula:

where E ∈ [0, 100] is the overall score (if E < 0, then E = 0), xk is the violation percentage of the metric k, wk

is the weighting coefficient of the metric k, M ∈ {b1,b2,c1,c2,...} are the metrics.

The list of all metrics:

• b1 - Browser is not supported.

• b2 - Focus changed to a different window.

• b3 - Full-screen mode is disabled.

• c1 - The webcam is disabled.

• c2 - Face invisible or not looking into the camera.

• c3 - Several faces in front of the camera.

• c4 - Face does not match the profile.

• c5 - Found a similar profile.

• k1 - Atypical keyboard keywriting.

• m1 - The microphone is muted or its volume is low.

• m2 - Conversation or noise in the background.

• n1 - No network connection.

• n2 - No connection to a mobile camera.

• s1 - Screen activities are not shared.

• s2 - A second display is used.

3.7 Token Based Links

Token can also be used to initialize and start a proctoring session by a link without using SDK if for some

reason SDK on the test page fails. To do this, just create a link in the following format (token is substituted

for “jwt”; if several integrations are connected, instead of “jwt” you need to specify the name of the

authorization provider):

URL

https://proctor-test1.youtestme.com/api/auth/jwt?token=<JWT>

Explanations:

• proctor-test1.youtestme.com — the proctoring system server address,

• jwt — name of the authorization provider,

 SDK-based Integration with YouTestMe Proctoring

Page 18 of 24

• <JWT> — the generated token.

Following the link a student will get into the proctoring system, and after passing the test and exiting the

proctoring system, he/she will be redirected back to the testing system. In this case the test page opens in

IFRAME of the proctoring system, and its address is taken from the “url” field. In order for the page to open

correctly in IFRAME, you must configure the Content-Security-Policy and X-Frame-Options correctly on the

test page (either do not pass these headers at all) and make sure HTTPS with valid SSL certificate is

supported. You should also take into account that there were changes to cookie setup policy Set-Cookie in

browsers Chrome 80+. It requires adding two configurations "SameSite=None; Secure" for trans-domain

cookies. Here is an example of response header options which allows you to open a third-party page in

IFRAME on a proctoring system page and use cookies in IFRAME:

HTTP Header

Set-Cookie: <cookie-name>=<cookie-value>; SameSite=None; Secure

Content-Security-Policy: frame-src https://*.youtestme.com

3.8 Data-attributes for automated initialisation

For simple SDK use cases, there is an automatic initialisation and session startup, as well as a payload

transfer using the data attributes of the script (the "script" tag).

Table 2.2 lists the supported data attributes.

Table 2.2 - Data attributes for automatic initialisation

Parameter Description

data-

supervisor

If this parameter is set up it indicates that automatic SDK initialisation is required. Two

values are supported: start - the proctor session is initialised and started; init - only the

session is initialised without starting.

data-

provider

This parameter indicates which provider is used on the initialisation, e.g., signup, login or

plain.

data-

referrer

This parameter defines a URL which will be used as a reference once the test is finished and

closed.

data-* Other possible fields for a payload which can be used for the specified provider.

This initialisation method can be used in conjunction with other integrations, such as LTI or JWT links. In this

case, an additional parameter "redirect" is specified in the authorisation link, which must contain the

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

 SDK-based Integration with YouTestMe Proctoring

Page 19 of 24

address of the page (/api/auth/<provider>?redirect=/path/to/sdk) that hosts the code with automatic SDK

initialisation with one single data attribute "data-supervisor". A code sample:

HTML

<script src="https://proctor-test1.youtestme.com/sdk/supervisor.js" data-supervisor="start"></script>

The "data-supervisor" attribute with the value "init" can be used to start preliminary proctoring steps (such

as hardware checks) without starting a proctoring session. A code sample:

HTML

<script src="https://proctor-test1.youtestme.com/sdk/supervisor.js" data-supervisor="init"></script>

You can use the "signup" provider to start a proctoring session on the test system page with manual

registration for the event. A code sample:

HTML

<script src="https://proctor-test1.youtestme.com/sdk/supervisor.js" data-supervisor="start" data-

provider="signup"></script>

 SDK-based Integration with YouTestMe Proctoring

Page 20 of 24

4 Monitoring and access to proctor protocols

A user with the “Proctor” role can log in to real-time sessions and view protocols by logging in to the

proctoring system using JWT token, login and password or by opening protocol using a unique link. In the

monitoring interface, a proctor sees only those sessions in which he/she is a member.

A proctor can log into the proctoring system by login and password. For this aim, proctors’ accounts must

be created in advance through the admin panel, and their logins must be added to the correspondent

sessions (the "invites" field).

You can create special links to go to a specific session protocol. Using these links, you can open the session

protocol without being a system user. To allow opening sessions by a link without authorization, you need

to enable the "addons[].shared" option for a particular session (you can also enable this option in the

template). In this case, it is recommended to use complex session identifiers that are protected from

attacks. A link to protocol is formed as follows:

URL

https://proctor-test1.youtestme.com/api/report/<identifier>

Explanations:

• proctor-test1.youtestme.com — the proctoring system server address,

• <identifier> — the session identifier.

You can authorize a specific proctor with automatic account creation in the proctoring system using a link

with a JWT token. Here is an example of filling in the fields of JWT token for authorizing a proctor:

JWT payload

{

 "username": "proctor1",

 "role": "proctor"

}

Here you can see an example of a link to protocol with authorization by JWT token:

URL

https://proctor-test1.youtestme.com/api/auth/jwt?token=<JWT>

Explanations:

 SDK-based Integration with YouTestMe Proctoring

Page 21 of 24

• proctor-test1.youtestme.com — the proctoring system server address,

• jwt — name of the authorization provider,

• <JWT> — the generated token.

In addition, you can specify the session identifier in the JWT ("identifier" field), then the protocol of the

specified session will be opened for the proctor immediately after authorization.

 SDK-based Integration with YouTestMe Proctoring

Page 22 of 24

5 Getting the results of proctoring

The proctoring system can transfer the results of proctoring sessions to the testing system using webhooks

in JSON format. This is useful when you want to combine test results and proctoring results directly in the

testing system. The results are transmitted immediately after the end of the session by the student or

proctor, when the session is automatically terminated by timeout or when the proctor’s conclusion is issued

(or changed) after checking the protocol for some time after the end of the session.

The results are transmitted by an HTTP request by the POST method to the testing system server from the

side of the proctoring system server using the URL specified in the “api” field of each session. The content

type ("Content-Type" header) is "application/json". Access to the API should be limited by the key passed in

the header of the HTTP request (by default, this is the “X-Api-Key” header). A request with one “identifier”

can be executed several times with different data, therefore, it is necessary to provide for their updating in

the testing system when data is received again from the proctoring system. If all is well, then the response

code should be 200, the content of the response body is not taken into account and is usually left blank. In

case of an error, the API should return a response code other than 200.

Table 4.1. Field description

Field Type Description

identifier* String Session ID

status String Session status:

started - started, in the process of work

skipped - skipped, was not started before the deadline

stopped - completed but not rated by the proctor

accepted - positively rated by the proctor

rejected - negatively rated by the proctor

duration Number The actual duration of the session (minutes)

startedAt Date Date and time of the actual start of the session

stoppedAt Date Date and time of the actual end of the session

score Number Automatic evaluation for proctoring sessions (0-100)

averages Object The list of average indicators per session for each metric separately in the format

"metric: value"

student String Student's username

proctor String Proctor's username who rated the session

comment String Proctor's comment on the session

 SDK-based Integration with YouTestMe Proctoring

Page 23 of 24

link String Link to the session protocol

* — required fields, other fields may not be transmitted or take "null".

The webhook.site service can be used to test the webhook results API. To do this, in the "api" field of the

session created via JWT, specify the URL that is listed on the page of the service. Then start and end the

session and a few minutes after the session is over a request will come for the specified URL. You will be

able to see the request parameters in the interface of this service.

https://webhook.site/

 SDK-based Integration with YouTestMe Proctoring

Page 24 of 24

6 Integration checklist

To verify that the SDK integration is correct, use the following checklist:

1. The supervisor.js SDK script must be downloaded from the same server to which you are

connecting, otherwise the server and SDK versions will be different, which will lead to errors in the

SDK. The proctor-test1.youtestme.com server can only be used to develop and verify your

integration.

2. Initialization of proctoring with init() is usually performed just before testing with proctoring. During

the initialization process, the user can see interfaces with preliminary steps (event rules, equipment

check, photos, mobile camera connection). The init() function may return an error, in which case

the test cannot be started.

3. Proctoring is started by the start() function when testing starts. In the process of starting

proctoring, access to the camera, microphone and screen may be requested. After successful

proctoring, a circle with the participant's camera may be displayed on the screen. Training or some

preliminary actions should not be included in the proctoring session, only the test itself (with a time

limit), otherwise it may negatively affect the assessment of trust. The start() function may return an

error, in which case the test cannot be started.

4. When refreshing the page (F5 or closing and reopening), the test and proctoring session should be

restored in the same way as the first run through the init() and start() functions, in this case the

session identifiers (identifier field) and user (username field) should not change.

5. After the test is completed, the proctoring session should be terminated with the stop() function

and then it is recommended to exit through logout().

6. Once a proctoring session is finished, access to the test should also be closed. A proctoring session

can end at the initiative of the participant, the proctor or automatically by timeout and deadline.

The stop event subscription can be used to handle this scenario.

7. You can use the service webhook.site to test the transfer of results via webhooks.

https://webhook.site/

	1 Introduction
	2 Proctoring scenario
	2.1 Technical implementation of the scenario

	3 SDK integration
	3.1 JSON Web Token Standard (RFC 7519)
	3.2 Token Generation
	3.3 Token Usage
	3.4 Session Start
	3.5 Session Completion
	3.6 Metrics event
	3.7 Token Based Links
	3.8 Data-attributes for automated initialisation

	4 Monitoring and access to proctor protocols
	5 Getting the results of proctoring
	6 Integration checklist

